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We apply the second-order formulation of Maxwell’s equations proposed by Jiang
et al. (1996, J. Comput. Phys. 125, 104) to the solution of the implicit formulation of
the three-dimensional, time-dependent Vlasov–Maxwell’s system. An implicit finite
difference algorithm is developed to solve the Maxwell’s equations in a bounded
domain with physical boundary conditions comprising electrically conducting walls
(perfect conductors) and constant magnetic flux walls. We formulate the boundary
conditions for Maxwell’s equations to satisfy Poisson’s equation throughout the do-
main by solving it only on the boundary. This eliminates the need for a separate
projection step. We compare numerical results with analytical solutions for electro-
magnetic waves in vacuo, and using the implicit particle-in-cell code CELESTE3D,
we test the new solver on the geospace environment modeling magnetic reconnection
challenge problem. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

By computing the self-consistent motion of a large number of charged particles in the
fields they produce, one can simulate the full complexities of a plasma from first principles
[6, 25]. Such simulations have made important contributions to magnetic confinement [55],
laser fusion [30], and space plasmas [61].

This paper is about the application of the second-order formulation of Maxwell’s equa-
tions proposed by Jiang et al. [32] to the solution of the full Vlasov–Maxwell system.

The numerical solution of Maxwell’s equations is a topic widely discussed in the literature.
The basic difficulty in solving the typical, first-order Maxwell’s equations is related to the
fact that Maxwell’s equations comprise a system of eight equations for six unknowns
(assuming charge and current densities are given). Nevertheless, it is incorrect to consider
the divergence equations redundant, on the basis that the divergence conditions will be
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satisfied if they are initially, as is often done [24]. It has been shown that ignoring the
divergence conditions leads to incorrect solutions of Maxwell’s equations [32, 50].

The second-order formulation of Maxwell’s equations has also been considered for the
implementation of a numerical algorithm and there are many reports regarding numerical
solutions which do not satisfy the divergence constraints [5, 49, 53, 60]. The second-
order Maxwell’s equations are derived from the first-order equations by applying the curl
operator: The equations so obtained admit more solutions than do their progenitors. The
spurious solutions, in particular, do not satisfy the divergence laws [32]. In this context, it
is shown that boundary conditions play a crucial role in satisfying the constraints on the
solution of Maxwell’s equations [1, 32]. Jiang et al. show that if one satisfies Gauss’s law
on a part of the boundary at all times, the solution of Faraday’s and Ampère’s laws will
satisfy Gauss’s law throughout the volume [32].

Within this context, in their paper Jiang et al. describe a node-based least-squares finite
element method able to achieve the satisfaction of the divergence conditions [32].

Here, we propose a finite difference algorithm, based on the second-order formulation
of Maxwell’s equations and its boundary conditions, as proposed by Jiang et al., applied in
the context of plasma simulation using an implicit method for the solution of the Vlasov–
Maxwell system.

Implicit simulation methods are useful for the study of low-frequency phenomena and
realistic electron–ion mass ratios. Predictions of self-generated magnetic fields in laser–
plasma interactions [19] were confirmed by experiments in Ref. [62]. Implicit simulations
of quasi-perpendicular [20] and quasi-parallel shocks [46] reveal complex behavior that
is the subject of continuing study [52]. Simulations of the lower-hybrid-drift instability
give estimates of the nonlinear saturation mechanism [10]. A more recent reexamination
of this problem led to the discovery of the drift–kink instability [26] and the nonlinear
development of the Kelvin–Helmholtz instability [37]. Results for beam filamentation and
expansion into a vacuum are reported in Ref. [14]. Studies of magnetic reconnection are
reported in Refs. [17, 22, 23, 37, 57]. Comparisons of implicit and hybrid solutions for
switch-off shocks [13] and contact discontinuities [35, 39] help to define the range of
validity of hybrid methods. The implicit moment method is also applied to plasma opening
switch modeling in Ref. [43].

We remark that in the context of the plasma simulations, additional difficulties arise
in solving Maxwell’s equations. Implicit plasma simulations require the solution of the
Maxwell equations in the presence of a permittivity in the form of a nonsymmetric tensor.
Also, in the context of plasma simulations, it is pointed out that the continuity equation
may be not satisfied [22]. Consistent with this observation, projection is used to assure that
Poisson’s equation is satisfied. (Charge-conserving algorithms have also been developed
that eliminate the need to solve Poisson’s equation [18, 58], but these have not yet been
employed in implicit simulations.) In a common projection method, a scalar potential is
introduced as a correction to the electric field and is solved to satisfy Gauss’s law, thus
bringing into correspondence the number of boundary conditions and unknowns for the
electric field [22, 33]. However, in implicit formulations, projection is only approximately
correct because of a coupling of longitudinal and transverse components of the electric field
by the plasma permittivity [12].

The main point of this paper is that Poisson’s equation can be satisfied in the volume
without the need for projection through a new formulation of the boundary conditions for
Maxwell’s equations following Jiang et al. [32].
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The paper is organized as follows. First, we discuss Jiang et al.’s second-order Maxwell’s
equations, focusing on the boundary conditions in the context of the Vlasov–Maxwell
system. These boundary conditions take an especially simple form for perfectly conducting
and magnetic flux surfaces. Next, we describe the numerical implementation of consistent
boundary conditions in CELESTE3D, a particle-in-cell (PIC) code based on the implicit-
moment plasma simulation method [9, 59]. Finally, we present the results of calculations
for electromagnetic wave propagation in vacuo and for the geospace environment modeling
(GEM) magnetic reconnection challenge [7].

2. GOVERNING EQUATIONS

In this section, the first-order Maxwell system is stated in a spatial finite domain with
physical boundaries comprising electric walls (perfect conductors) and magnetic symmetry
walls. The second-order Maxwell equations are then deduced: Their formulation is discussed
in order to take into account implicitly the divergence constraints.

2.1. The First-Order Maxwell Equations

Following Jiang et al. [32], we consider Maxwell’s equations in the finite domain
� = � × I , where � ⊂ �3 represents the bounded, simply connected and convex, spa-
tial domain, while I = [0, T ] denotes the temporal interval of interest. (The extension to
multiply connected domains is straightforward, but the presence of reentrant corners raises
a number of problems which we will not consider [2].) The spatial domain � has a piece-
wise smooth boundary ∂� = ∂�1 ∪ ∂�2, where ∂�1 denotes a perfect conductor and ∂�2

a magnetic flux surface. Generalizing to periodic boundary conditions is straightforward.
The generic point in the integration domain is denoted by the coordinates (r, t).

For general, time-varying three-dimensional fields, Maxwell’s equations can be stated
(in Gaussian units), in the domain �, as




∇ × E + 1
c

∂B
∂t = 0

∇ × B − 1
c

∂E
∂t = 4π

c J

∇ · E = 4πρ

∇ · B = 0.

(1)

In addition there is a charge continuity equation,

∂ρ

∂t
+ ∇ · J = 0, (2)

and a momentum equation,

∂J
∂t

= q

m
[ρE + J × B − ∇ · P]; (3)

where E is the electric field, B is the magnetic flux density, ρ is the charge density, J
is the charge current density, and P is the pressure tensor (the pressure is assumed given
for the purpose of discussion). The equations are written in microscopic form, so that the
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electric flux density coincides with the electric field, the magnetic flux density equals the
magnetic field, and the dielectric permittivity and the magnetic permeability are unitary. The
extension to physical systems with scalar and constant dielectric permittivity and magnetic
permeability is trivial.

The initial conditions for solving Maxwell’s equations are assumed to be

{
E(r, 0) = E0(r)

B(r, 0) = B0(r)
with

{
∇ · E0 = 4πρ(r, 0)

∇ · B0 = 0
for r ∈ �, (4)

while the boundary conditions, on a perfectly conducting wall ∂�1, can be expressed as

{
n × E = 0
n · B = 0

(5)

and, on a constant flux wall ∂�2, as

{
n · E = 0
n × B = 0.

(6)

On a constant magnetic flux surface wall, ∂�2, the boundary condition

n · J = 0 (7)

is respected.

2.2. The Second-Order Maxwell Equations

Using the div–curl method, Jiang et al. [32] show that the full first-order system of
Maxwell’s equations is equivalent to two decoupled systems, one involving the electric
field E and the other involving the magnetic flux density B.

The second-order system for the electric field E can be stated as




∇ × ∇ × E + 1
c2

∂2E
∂t2 = − 4π

c2
∂J
∂t in �

∇(∇ · E − 4πρ) = 0 in �

n × E = 0 on ∂�1 × I
∇ · E = 4πρ on ∂�1 × I
n · E = 0 on ∂�2 × I
n × (∇ × E) = 0 on ∂�2 × I,

(8)

where the curl–curl equation is supplemented by a divergence constraint and a modified set
of boundary conditions suitable for a second-order spatial equation. The initial conditions
required by a temporal second-order system are the initial electric field E0 and its initial
temporal derivative

∂E
∂t

∣∣∣∣
t=0

= c∇ × B0 − 4πJ(r, 0), (9)

which couples the electric field E and the magnetic flux density B.
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It should be pointed out that system (8) is fully equivalent to the first-order Maxwell
system (1) in the sense that they yield identical solutions.

A similar system for the magnetic flux can be deduced. In any case, once the electric field
E is known from the solution of system (8), the magnetic flux B can be readily evaluated
by integrating the first equation of system (1),

B(r, t) = −c
∫ t

0
∇ × E(r, t ′) dt ′ + B0(r). (10)

Using a least-squares method, Jiang et al. [32] prove that the second equation in system
(8), the divergence equation, can be removed as it is implicitly satisfied by the curl–curl
equation and the boundary conditions. A proof is also given by Mayergoyz and d’Angelo
[40] when ∂�1 ≡ ∂� and the mathematical details involved in the proof are discussed in
Ref. [28]. To illuminate some properties of the divergence law related to the implementation
of a numerical algorithm to solve Maxwell’s equations, a different proof is furnished in the
present paper.

The function χ is introduced as

χ = ∇ · E − 4πρ (11)

and Gauss’s law is satisfied if and only if χ ≡ 0.
By applying the divergence operator to the curl–curl equation in system (8), it is possible to

deduce the equation satisfied by χ . Two possibilities exist. One can study the first equation
of system (8) as it is, or one can develop ∇ × ∇ × E using Gauss’s law. Two different
equations for χ can be obtained following the two approaches. These two equations are
both considered.

2.2.1. The Equation for χ When the Straight Curl–Curl Equation is Considered

By applying the divergence operator to the curl–curl equation in system (8), the following
equation for the function χ is obtained:

∂2χ

∂t2
= 0. (12)

If the initial conditions are such that

{
χ(r, 0) = 0
∂χ

∂t

∣∣
t=0 = 0

for r ∈ � (13)

then χ ≡ 0, Gauss’s law is respected, and the divergence constraint in system (8) is implicitly
satisfied. This means that system (8) can be simplified to




∇ × ∇ × E + 1
c2

∂2E
∂t2 = − 4π

c2
∂J
∂t in �

n × E = 0 on ∂�1 × I
∇ · E = 4πρ on ∂�1 × I
n · E = 0 on ∂�2 × I
n × (∇ × E) = 0 on ∂�2 × I.

(14)



122 RICCI, LAPENTA, AND BRACKBILL

In view of developing a numerical algorithm to solve system (14), one can ask what the
properties of the solution (14) will be if the initial conditions given by Eq. (13) for χ are
not satisfied. Consider a perturbation, expressed in Fourier harmonics, with χ written as

χ(r, t) =
∑

k

χk(t) exp(ik · r) (15)

and initial conditions

χk(0) = Ak,
dχk(t)

dt

∣∣∣∣
t=0

= Bk. (16)

Because χ satisfies Eq. (12),

χk(t) = Bkt + Ak, (17)

and, as a consequence, an initial perturbation grows linearly in time.

2.2.2. The Equation for χ Developing the Curl–Curl Equation Using Gauss’s Law

Using the vector identity

∇ × ∇ × E = ∇(∇ · E) − ∇2E (18)

and the Gauss equation to evaluate ∇ · E, one can write the curl–curl equation as

∇2E − 1

c2

∂2E
∂t2

= 4π

c2

∂J
∂t

+ 4π∇ρ. (19)

To study the divergence constraint, the divergence operator is applied to Eq. (19), and
the function χ is shown to satisfy the wave equation

1

c2

∂2χ

∂t2
= ∇2χ, (20)

where the boundary conditions for χ can be derived from system (8).
In fact, regarding ∂�1, the boundary condition for Eq. (20) can be expressed simply

as χ = 0. On ∂�2, the normal component of the gradient of the function ∇ · E can be
considered,

[∇(∇ · E)] · n = [∇2E + ∇ × ∇ × E] · n = ∇2E · n, (21)

where we have observed that (∇ × ∇ × E) · n = 0, as follows from the boundary condition
on ∂�2, n × (∇ × E) = 0 [Eq. (8)]. Noting the boundary conditions n · E = 0 and J · n = 0
on ∂�2 expressed by Eqs. (8) and (7), the projection of Eq. (19) along n leads to

∇2E · n − 4π∇ρ · n = 0, (22)

and, remembering Eq. (21), it follows that

∇(∇ · E − 4πρ) · n = ∇χ · n = 0, (23)



SIMPLIFIED IMPLICIT MAXWELL SOLVER 123

so that the boundary conditions for Eq. (20) can be summarized as

{
χ = 0 on ∂�1 × I
n · ∇χ = 0 on ∂�2 × I.

(24)

If the initial conditions are expressed as in Eq. (13), Eq. (20) with the boundary conditions
given by Eq. (24) leads to χ ≡ 0: Gauss’s law is respected and the divergence constraint in
system (8) is implicitly satisfied. In this case, system (8) is written as




∇2E − 1
c2

∂2E
∂t2 = 4π

c2
∂J
∂t + 4π∇ρ in �

n × E = 0 on ∂�1 × I
∇ · E = 4πρ on ∂�1 × I
n · E = 0 on ∂�2 × I
n × (∇ × E) = 0 on ∂�2 × I.

(25)

Following the same analysis of the previous section, it is possible to study the growth of
an initial perturbation for the function χ . In contrast to Eq. (17), it is found that an initial
perturbation does not grow, its behavior is oscillatory, and the initial perturbation bounds
χ , as it is

χk = iωAk + Bk

2iω
exp(iωt) + iωAk − Bk

2iω
exp(−iωt), (26)

where ω = ck.

3. THE NUMERICAL ALGORITHM

For problems where one needs a full kinetic description of a plasma, one has no choice
but to use the most general model. Mason [41] and Denavit [16] introduced implicit plasma
simulation methods, which retain a full kinetic model but are much more efficient for low-
frequency plasma phenomena because they eliminate many numerical stability constraints
on the time and space steps.

While the explicit methods are constrained to follow the fastest time scale of the physical
system, so that the time step limit in an explicit plasma simulation is fixed by ωpe
t < 2
(where ωpe is the electron plasma frequency), the time step constraints that have been
discussed for the implicit methods are a Courant limit imposed by the propagation of
acoustic waves [9, 41] and an accuracy limit arising from the derivation of the fluid moment
equations [9, 11]. This limit restricts the mean particle motion to one grid cell per time step,
effectively

vth,e
t/
x < 1, (27)

since the electron thermal velocity is usually larger than the ion thermal velocity. In a typical
simulation of magnetospheric plasma, the time step of the implicit method can be 40 times
longer than that allowed for an explicit simulation.

The grid spacing limit for the explicit method, 
x < ςλDe, where ς is a parameter
depending on the interpolation scheme and λDe is the electron Debye length, is replaced by


x/
t < ςvth,e, (28)
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within the implicit method, and the gain in the grid spacing limit is about 10 in a typical
magnetosphere simulation.

A limit on the time step imposed by the number of simulation particles is discussed in
Ref. [34]. Denoting with Npc the number of simulation particles per cell, the time step must
satisfy the inequality

(ωpe
t)2 < Npc. (29)

A study of energy conservation with the direct implicit method shows that energy is con-
served very accurately for ωpe
t ≤ 2 and that energy errors are small even for very large
time steps [14]. Results with the implicit moment method in one dimension, where stabil-
ity is observed with vth,e
t/
x = 0.5 and excellent energy conservation is observed with
vth,e
t/
x = 0.01 and (ωpe
t)2 = 5.25 × 106 � Npc = 10, suggests that Eq. (27) is a
sufficient limit [59].

Mason’s implicit moment method reduces the number of equations that must be solved
self-consistently to a set of coupled fluid moment and field equations. The solution of these
equations implicitly, together with the subsequent explicit solution of the particle equations
of motion in the resulting fields, is surprisingly stable and accurate. The implicit moment
method is extended to electromagnetic plasma dynamics in two dimensions in Refs. [9, 11]
and in three dimensions in Ref. [56]. (Direct implicit methods, which replace the fluid
moment equations by an expansion about the unperturbed particle orbits are described
for electrostatic plasmas in Ref. [34], magnetized plasma in Ref. [3], and electromagnetic
plasmas in Ref. [22].)

The implicit moment method formulation is described in Refs. [9, 11, 59]. Here we show
how this formulation is changed when we solve the second-order Maxwell system (8) for
the electric field E, in the form given by Eqs. (14) and (25). The system is, of course, coupled
to Eq. (10) for the magnetic flux density B.

In this section, the numerical algorithm for the implicit moment method is reviewed and
discretization in time and space for Maxwell’s equations is described.

3.1. Temporal Discretization

The solution is advanced in the time domain I with discrete time steps 
t , from the
initial time, t0 = 0, to the final time, t N = T . Corresponding to the time step n (t = tn), the
fields are denoted with En(r) and Bn(r).

The charge density ρn , the current density Jn , and the pressure Pn are accumulated from
a distribution of particles which represent the plasma. Each particle has a unique label p,
a coordinate rp, a charge qp, a mass m p, and a velocity, up. The accumulation uses shape
functions, S(r) typically b-splines, which are normalized and have bounded support, and is
expressed as a summation over particles,

ρ(r) =
∑

p

qp S(l)(r − rp)

J(r) =
∑

p

qpup S(l−1)(r − rp)

P(r) =
∑

p

m pupup S(l−2)(r − rp),

(30)

where the superscript l indicates the order of the b-splines for each accumulation S, following
Ref. [59].
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Semidiscrete, continuous space approximations to Maxwell’s equations are written




∇ × En+θ + 1
c

Bn+1−Bn


t = 0

∇ × Bn+θ − 1
c

En+1−En


t = 4π
c Jn+ 1

2

∇ · En+θ = 4πρn+θ

∇ · Bn = ∇ · Bn+1 = 0,

(31)

where θ ∈ [1/2, 1] is a parameter chosen to adjust the numerical dispersion relation for
electromagnetic waves (for θ < 1/2, the algorithm is shown to be unstable [11]). We note
that for θ = 1/2 the scheme is second-order accurate in 
t ; for 1/2 < θ ≤ 1 the scheme
is first-order accurate. Higher order differencing schemes are described in Ref. [47]. Vari-
ables at time level n + θ are given by linear interpolation, U n+θ = θU n+1 + (1 − θ)U n .
The charge density, ρn+θ , and current density, Jn+1/2 = (Jn+1 + Jn)/2, are obtained from
approximations to the charge continuity and momentum equations, Eqs. (2) and (3),

ρn+1 − ρn


t
+ ∇ · Jn+ 1

2 = 0 (32)

and

Jn+1 − Jn


t
= q

m

[
ρnEn+θ + Jn+ 1

2 × Bn

c
− ∇ · Pn

]
. (33)

Using the electric and magnetic field obtained by the solution of Maxwell’s equations
(31) in the context of the fluid moment approximation, it is possible to update explicitly the
particle positions. The correction to the electric field En , required to satisfy Eq. (11) with
χ = 0 and ρn given by particle data, is accomplished by projection

Ên = En − ∇φ, (34)

which requires the solution of a Poisson’s equation with constant coefficients for φ,

∇2φ = ∇ · En − 4πρn, (35)

where Ên is the value of the electric field in accordance with particle data.
The numerical method employed by the implicit PIC code CELESTE3D requires Jn+1/2

to be split as [59]

Jn+1/2 = Ĵ
n + µn

4πθ
t
· En+θ , (36)

where Ĵ
n

depends on quantities that are known at time tn and is separated from a term which
depends linearly on the electric field En+θ through the tensor µn .

In particular, the case µ = 0 corresponds, in the context of the implicit plasma simula-
tions, either to a vacuum or to 
t = 0. In the code CELESTE3D, µ = ∑

µs , where the
sum is over all the species of the plasma,

µn
s = θ
t2

2
ω2

psΠ
n, (37)
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ωps is the Langmuir frequency for species s,

ω2
ps = 4πρn

s qs

ms
, (38)

and

Πn =
[
I − βsI × Bn(r)/c + β2

s Bn(r)Bn(r)/c2
]

1 + [βs Bn(r)/c]2
, (39)

with I denoting the identity dyadic, qs and ms denoting the charge and the mass of particles
of species s, and βs = (qs
t)/(2ms). The current density which appears in Eq. (36) is
written Ĵn = Πn · [Jn − 
t (∇ · Pn)/2].

From the charge continuity equation, Eq. (32), the equation for Jn+1/2, Eq. (36), and
Maxwell’s equations, Eq. (31), we derive Poisson’s equation in the form that is solved in
earlier versions of CELESTE3D [36],

∇ · En+θ = 4πρ̂n − ∇ · (µn · En+θ ), (40)

where ρ̂ is defined as

ρ̂n = ρn − (
tθ)∇ · Ĵn. (41)

The dispersion and stability properties of these equations are discussed in Refs. [9, 11, 59].
The solution of Eq. (40) is troublesome for two reasons. (Essentially the same equation

appears in the direct implicit formulation [22, 34], so the problem is not unique to the
implicit moment method.)

First, Eq. (40) is hard to solve. Various methods have been used to solve this equation.
In Ref. [9], a Picard iteration is used in which the operator on the LHS is inverted using
Fourier transforms, and the RHS is lagged. In Ref. [4], the electric field is decomposed
using a Hodge decomposition, and a sequence of Fourier transforms is used to solve the
equation. In previous versions of CELESTE3D, a matrix-free GMRES algorithm is used
[48]. In Ref. [29], a matrix-free Newton–Krylov method with a multigrid preconditioner
yields optimal scaling results for a simulation of an unmagnetized plasma. In Ref. [59], a
direct solution in 1D is performed using Gaussian elimination. Only the last method works
for arbitrary values of 
t .

Second and more importantly, the presence of µ in Eq. (40) entangles the transverse and
longitudinal parts of the electric field. The self-consistent solution of Poisson’s equation,
Eq. (40), and Faraday’s law, Eq. (43), requires the solution of four equations for three
unknowns. Introducing a scalar potential correction, as in Eq. (35), brings the number
of unknowns into correspondence with the number of equations, but the presence of µ

couples the transverse and longitudinal parts of the electric field. One can show this by
decomposing E into transverse and longitudinal parts, written E = El + Et, where ∇ · Et =
0 and ∇ × El = 0. El can be replaced by the gradient of the scalar potential. However, in
contrast to Eq. (35), where only El contributes, both longitudinal and transverse fields
contribute in Eq. (40) [12],

∇ · En+θ
l = 4πρ̂n − ∇ · (

µn · En+θ
l

) − (∇ · µn) · En+θ
t . (42)
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As long as µ is spatially varying, both Et and El appear in both Eq. (40) and Eq. (43).
Therefore, it is only approximately correct to satisfy Eq. (40) by projection to correct the
electric fields as described in Ref. [12].

We note that the need for solving Poisson’s equation, Eq. (40), is eliminated in an ap-
proximate way in an earlier two-dimensional implicit moment scheme [42].

Substituting Ampère’s law into the curl of Faraday’s law, Eq. (31), yields

(cθ
t)2∇ × ∇ × En+θ + εn · En+θ= En + (cθ
t)

(
∇ × Bn − 4π

c
Ĵn

)
, (43)

where ε ≡ I + µ is the implicit permittivity, a general tensor which reduces to I for 
t → 0.
Using the vector identity, Eq. (18), and Poisson’s equation, Eq. (40), one can write Eq. (43)

in the equivalent form

(cθ
t)2[−∇2En+θ − ∇∇ · (µn · En+θ )] + εn · En+θ

= En + (cθ
t)

(
∇ × Bn − 4π

c
Ĵn

)
− (cθ
t)2∇4πρ̂n. (44)

Both Eqs. (44) and (43) are used in implicit plasma simulation. Kamimura et al. solve
Eq. (43) [27]. On the other hand, Hewett and Langdon find that a formulation consistent
with Eq. (44) provides better performance with an alternating direction implicit solver [22].
Our analysis provides two additional reasons for preferring Eq. (44) to Eq. (43).

The analysis of the evolution of the divergence constraint provides the first reason. The
function χ is discretized with values χn(r) and Fourier component amplitude χn

k . Applying
the divergence operator to Eq. (43) gives

χn+1
k = χn

k , (45)

so that an initial perturbation of the Gauss law neither grows nor decays but remains constant
in time. On the other side, the analysis of the evolution of the divergence conditions for
Eq. (44) leads to

χn+1
k = χn

k

[
1 − 1

θ

(c
tk)2

(c
tk)2 + 1

]
, (46)

and |χn+1
k | < |χn

k |, for every k and for θ ≥ 1/2. This means that the initial perturbations of
the Gauss law are damped, as is shown in Fig. 1.

The second reason is numerical. Equation (44) leads to a system of linear equations which
is better conditioned than Eq. (43). In fact, using the vector identity, Eq. (18), the LHS of
Eqs. (43) and (44) can be compared: Their only difference lies in the term ∇∇ · En+θ , which
is replaced by −∇∇ · (µ · En+θ ) in Eq. (44). In Eq. (43), the term ∇∇ · En+θ decreases the
absolute value of the diagonal elements, while the opposite effect is shown in Eq. (44).
Thus, Eq. (44) is associated with a matrix whose condition number is smaller than that for
Eq. (43) and its numerical solution is easier to obtain.

The boundary conditions for Eqs. (43) and (44) can be obtained directly from system
(14). Regarding the electric wall, it is possible to write{

n × En+θ = 0
∇ · (εn · En+θ ) = 4πρ̂n,

(47)
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FIG. 1. Ratio of the divergence errors (χk ) between two consecutive time steps, as shown by Eq. (46), when
system (44) is considered, for different values of θ and as a function of ck
t .

where we note that the implicit Poisson’s equation need be solved only on the boundary
∂�1, not in the whole domain as was necessary previously.

On the magnetic wall, the boundary conditions can be written readily as{
n · En+θ = 0
n × (∇ × En+θ ) = 0.

(48)

We note that Eq. (44) has no spurious solutions satisfying the equation

(cθ
t)2 [−∇2δ − ∇∇ · (µn · δ)] + εn · δ = 0, (49)

which is derived from Eq. (44) by setting the RHS to zero. We show that the only solution
to this equation is δ = 0.

In general, the solution δ is such that ∇ · (εn · δ) = 0 [the boundary conditions (47) and
(48) with the resulting divergence constraint are satisfied], and so Eq. (49) can be simplified
as

(cθ
t)2[∇ × ∇ × δ] + εn · δ = 0. (50)

Consider the integral I , defined as

I =
∫

�

δ · ((cθ
t)2[∇ × ∇ × δ] + ε · δ) dr = 0, (51)
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FIG. 2. Numerical dispersion relation of the electromagnetic waves given by the discretized Eqs. (43) and
(44), for different values of θ and as a function of ck
t . The thick solid lines represent the analytical dispersion
relation.

which is zero because Eq. (50) is satisfied. Using a standard vector identity, the triple vector
product in Eq. (51) is replaced by

(∇ × δ) · (∇ × δ) = δ · (∇ × (∇ × δ)) + ∇ · (δ × ∇ × δ). (52)

Since the boundary conditions require either n × δ = 0 on ∂�1 or n × (∇ × δ) = 0 on
∂�2, the contribution of the second term in Eq. (52) to the integral in Eq. (51) is zero,∫

�

∇ · (δ × (∇ × δ)) dr =
∫

∂�

n · (δ × ∇ × δ) d S = 0. (53)

Using the definition of ε, Eq. (37), and the fact that δ · Πs · δ = δ · δ, Eq. (51) is replaced
by

I =
∫

�

[
(∇ × δ) · (∇ × δ) + δ · δ

(
1 +

∑
s

θ
t2

2
ω2

ps

)]
dr = 0. (54)

Since both terms in the integrand are positive and I = 0, it follows that δ = 0 is the only
solution of Eq. (49) in the domain �.

With En+θ computed, the magnetic field is evaluated from Faraday’s law, Eq. (31), as

(Bn+1 − Bn)

c
t
= −∇ × En+θ . (55)

The dispersion relation of electromagnetic waves given by the time-discretized system
is plotted in Fig. 2 [11]. We note that the dispersion would be considered unacceptable
in computational electromagnetics, even with θ = 1/2. However, in plasma simulations,
which are driven by noisy particle data, the adjustable parameter θ provides useful filtering
and damping of poorly resolved, high-frequency modes. The role of θ in energy conservation
is discussed in [9]. Filtering for higher order time differencing is discussed in [15, 47].

3.2. Spatial Discretization

Maxwell’s equations are discretized in space using a uniform grid with spacing 
x, 
y,
and 
z in the x, y, and z directions. The vertices of the mesh which resolve � = [0, Lx ] ×
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[0, L y] × [0, Lz] are located at ri jk = (i
x, j
y, k
z), where i ∈ [0, Nx ], j ∈ [0, Ny], k ∈
[0, Nz]. The electric field En , the current density Jn , and the permittivity εn are evaluated
at the vertices of the mesh. The magnetic field Bn and charge density ρn are evaluated at
the centers of cells, labeled ri+1/2, j+1/2,k+1/2.

The differencing for CELESTE3D, which is described in Ref. [54], can be used for a
nonorthogonal, logically rectangular grid. However, the numerical algorithm for solving
Maxwell’s equations requires that the discrete analogues of the vector identities ∇ × ∇ f =
0 and ∇ · ∇ × v = 0 be satisfied exactly. This requirement is met by the CELESTE3D
differencing only on a uniform grid.

3.2.1. The Difference Equations

Derivatives are approximated by a simple box scheme. Where ψi jk is given at vertices,
∂ψ/∂x at cell centers is given by

∂ψ

∂x

∣∣∣∣
i+1/2, j+1/2,k+1/2

= ψi+1, j+1/2,k+1/2 − ψi, j+1/2,k+1/2


x
, (56)

and similarly for ∂ψ/∂y and ∂ψ/∂z. The face-centered value of ψ is computed by averaging
the neighboring vertex values,

ψi, j+1/2,k+1/2 = 1

4
(ψi jk + ψi, j+1,k + ψi, j+1,k+1 + ψi, j,k+1). (57)

Derivatives of variables stored at the centers of cells are approximated similarly. For exam-
ple, given λi+1/2, j+1/2,k+1/2, the derivative (∂λ/∂x)i jk is approximated by

∂λ

∂x

∣∣∣∣
i jk

= λi+1/2, j,k − λi−1/2, j,k


x
, (58)

where

λi+1/2, j,k = 1

4

(
λi+1/2, j+1/2,k+1/2 + λi+1/2, j+1/2,k−1/2λi+1/2, j−1/2,k−1/2 + λi+1/2, j−1/2,k+1/2

)
.

(59)

With these expressions, the field equations, Eqs. (43) and (44), are evaluated in a straight-
forward manner. In particular, the discrete analog of the Laplacian operator is obtained by
combining the divergence and gradient operators. On a two-dimensional grid, the Laplacian
has a five-point stencil; the central point is coupled to the four corners. On a three-
dimensional grid, the Laplacian has a nine-point stencil: the central point and the eight
corners of the cube around the central point.

3.2.2. Boundary Conditions

The boundary conditions expressed in Eqs. (47) and (48) are differenced in a similar
fashion.

For simplicity of presentation, we describe both conductor and constant magnetic flux
surface conditions for the same boundary z = Lz . The application to other boundaries is
straightforward.
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The perfect conductor boundary condition given by Eq. (47), n × E = 0, becomes
Ex (x, y, Lz) = Ey(x, y, Lz) = 0, which means Ex,i, j,Nz = Ey,i, j,Nz = 0. Regarding the di-
vergence constraint, we note that the charge density ρ̂ is zero inside the conductor, and an
integral over a volume enclosing a portion of the boundary will contain contributions from
the interior of � only. At k = Nz , one obtains the following expression:

(
Dz,i+1/2, j+1/2,Nz − Dz,i+1/2, j+1/2,Nz−1

)

x
y

+ (
Dx,i+1, j+1/2,Nz−1/2 − Dx,i, j+1/2,Nz−1/2

)

y
z

+ (
Dy,i+1/2, j+1,Nz−1/2 − Dy,i+1/2, j,Nz−1/2

)

z
x

= 4πρ̂i+1/2, j+1/2,Nz−1/2
x
y
z. (60)

Recall that the two tangential components of the electric field at the boundary are equal to
zero, and the only unknown quantities in Eq. (60) are the normal components of the electric
field at the vertices with k = Nz , which lie on the boundary. In general, one must evaluate
the normal components of the electric field by solving the coupled linear system given by
Eqs. (60) for all the boundary cells.

However, in particular cases, because to the properties of the tensor µ, the system made
up by the set of Eqs. (60) can be decoupled. This is the case for the GEM challenge, where a
two-dimensional system is considered with a negligible out-of-plane magnetic field on the
conducting boundaries. In this case, BB · E = 0 and the in-plane component of (I × B) · E
parallel to the boundary vanishes so that the in-plane E and D are parallel. It follows that
the vector D is normal to the boundary and Eq. (60) becomes a simple Neuman boundary
condition for Dz and, as a consequence, for Ez .

Moreover, at the cost of an additional error, the divergence boundary constraint can be
expressed using a first-order discretization scheme, with which it is possible to decouple
the system of Eqs. (60). The error this introduces is discussed in the text section while
analyzing some test cases.

The magnetic mirror boundary condition, Eq. (48), can be applied in a similar fashion. If
the boundary z = Lz represents a magnetic mirror, Ez,i j Nz = 0 and the normal derivatives
of the tangential components of E are equal to zero. Thus, the boundary conditions can be
summarized as 


Ex,i, j,Nz = Ex,i, j,Nz−1

Ey,i, j,Nz = Ey,i, j,Nz−1

Ez,i, j,Nz = 0,

(61)

which, we remark, are first-order boundary conditions.

4. NUMERICAL RESULTS

First, a numerical code has been developed to test the Maxwell solver without plasma
in two dimensions. Some simple test cases have been considered to study in detail the
properties of the numerical algorithm. The test cases are two dimensional, with µ = 0;
they involve transverse electric (TE) waves. In this particular case, analytical solutions
of Maxwell’s equations are available. This test case shows that Jiang et al.’s boundary
conditions, which were implemented and tested with a finite element method, also work
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with finite differences. In particular, we measure the accuracy with which Gauss’s law is
satisfied and how the error is affected by the accuracy of the boundary conditions.

Second, the Maxwell solver developed here is applied to the implicit PIC code
CELESTE3D, which requires the solution of the Maxwell equation in media with anisotropic
and inhomogeneous µ. The numerical simulations shown concern the GEM magnetic re-
connection challenge [7].

4.1. Numerical Results for Simple Test Cases

A two-dimensional charge-free system is considered, with � = [0, Lx ] × [0, L y], de-
noting a generic point in the domain � with (x, y, t). The TE waves are considered, so that
E = (Ex , Ey, 0) and B = (0, 0, Bz). The boundary conditions are set, on the edges x = 0
and y = L y , as perfect conductors; the edges y = 0 and x = Lx are magnetic flux surfaces.
The natural boundary conditions for this system can be expressed as Ey = 0 for x = 0,
Ex = 0 for y = L y , Ey = 0 for y = 0, and Ex = 0 for x = Lx . The additional boundary
conditions set for the second-order system are ∂ Ex/∂x = 0 for x = 0, ∂ Ey/∂y = 0 for
y = L y , ∂ Ex/∂y = 0 for y = 0, and ∂ Ey/∂x = 0 for x = Lx .

It is possible to solve analytically Maxwell’s equation inside this physical system. The
analytical solution considered can be expressed as




Ex (x, y, t) = E0ky cos(kx x) cos(ky y) sin(kct)/kx

Ey(x, y, t) = E0 sin(kx x) sin(ky y) sin(kct)

Bz(x, y, t) = E0k cos(kx x) sin(ky y) cos(kct)/kx ,

(62)

where

kx = π

2Lx
, ky = π

2L y
. (63)

Figure 3 compares the analytical and numerical solutions of Maxwell’s equations for
electromagnetic waves (62) for different values of the parameter θ . The numerical solu-
tions show no damping for the case θ = 1/2. With other values (θ = 3/4 and θ = 1), the
electromagnetic waves are damped.

For the same physical system, the error in the solution of Poisson’s equation for the
electric field is displayed in Figs. 4 and 5. In particular, to understand the effect of the
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FIG. 3. Evolution of the magnetic field Bz , in a generic point of the spatial domain, for different values of the
parameter θ . The case represented is that of Eq. (62). It is Lx = L y , ck
t = 0.25, and k
x = k
y = 0.045.
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of the parameter θ , for the same system represented in Fig. 3.

accuracy of the boundary conditions, two different formulations of the boundary conditions
are implemented. (We remark that the boundary conditions can be simplified with respect
to the general case, as µ = 0 and ρ = 0.) The first formulation satisfies the boundary
conditions to first-order accuracy for physical boundaries that pass through the vertices
of the grid. For the perfect conductor at x = 0, the boundary conditions Ey,0, j = 0 and
Ex,0, j = Ex,1, j are applied. For the magnetic flux surface at y = 0, we apply the boundary
conditions Ey,i,0 = 0 and Ex,i,0 = Ex,i,1. Similar conditions are applied to the other two
edges. The second formulation satisfies the boundary conditions to second-order accuracy
for physical boundaries that pass through the cell centers. At x = 0, the boundary conditions
Ey,0, j = −Ey,1, j and Ex,0, j = Ex,1, j are applied; while for y = 0, we apply the boundary
conditions Ey,i,0 = −Ey,i,1 and Ex,i,0 = Ex,i,1. The boundary conditions for the other two
edges are applied similarly.

In Fig. 4 the numerical errors related to the divergence constraints are shown using the
L2-norm, defined as

‖χ‖2 = 1

N

√∑
c

(χc)2, (64)

where the sum is extended to all the cell centers and N denotes the number of cell centers
in the system. Also the L∞-norm, defined as

‖χ‖∞ = max
c

(χc), (65)
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FIG. 5. (a), (c) Evolution of the L2-norm and (b), (d) evolution of the L′
2-norm of the function χ , when system

(43) is implemented (dashed lines) and when system (44) is considered (solid lines). In the upper figures [(a) and
(b)], the boundaries are of second order, in the lower figures [(c) and (d)] the boundaries are of first order. The
physical system represented in Fig. 3 is considered.

has been employed. In this case, the code implements Eq. (44) and the physical boundaries
of the system are the second-order ones. Figure 4 shows that the numerical errors related
to the divergence constraint are almost constant in time and always of the order of the
truncation error. The error is smaller in the case θ = 1: This is due both to the fact that, in
this case, the electric field is damped and to the growth rates of the error on the divergence
constraint being different depending on θ , as stated by Eq. (46).

Figure 5 represents the error on the divergence constraint to compare the cases when
Eq. (43) or Eq. (44) is implemented, and when the boundaries are of first and second order.
In Fig. 5, the L′

2-norm is employed, which is defined as

‖χ‖′
2 = 1

N ′

√∑
c′

(χc′)2, (66)

where c′ denotes the inner cell centers (the cells not located on the boundary) and N ′ is
their number.

The plots of the L2-norm show that the divergence constraint is better respected when
Eq. (44) is implemented. This fact agrees with the theoretical discussion developed in
Eqs. (45) and (46). In particular, the L2-norm is smaller if the boundary conditions are
of second order. The plots of the L′

2-norm show that, if system (43) is implemented, the
divergence constraint of each cell is decoupled from the others, as follows from Eq. (45);
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in particular, the inner cells are decoupled from the boundary cells. This can be seen more
clearly in the case of first-order boundary conditions. In this case, in fact, the error on the
divergence constraint on the boundary is significant, being of order 10−6 E0/Lx while, in-
side the domain, the divergence error is of order 10−17 E0/Lx . If Eq. (43) is implemented,
the errors do not penetrate inside the domain: The L′

2-norm has the same order of magni-
tude which characterizes the interior domain while the L2-norm, which takes into account
the boundary cells, has an order of magnitude comparable to the divergence error of the
boundary cells. By contrast, if Eq. (44) is implemented, the L2-norm and the L′

2-norm are
comparable.

4.2. Testing CELESTE3D against the GEM Challenge

The code CELESTE3D with the new Maxwell solver is tested by performing a simulation
whose parameters match those of the GEM magnetic reconnection challenge (see Ref. [7]
and references therein).

The GEM challenge project seeks to understand the physics that controls the rate of
magnetic reconnection in the Earth’s magnetotail. Through magnetic reconnection, mag-
netic field lines of opposite polarity reconfigure to a lower energy state, with the release of
magnetic energy as heat, directed plasma flow, and the penetration of the solar wind into the
magnetosphere. Magnetic reconnection in the magnetotail has been observed by the Wind
spacecraft in a serendipitous encounter, which has revealed the key processes predicted by
the models [44].

Within the GEM challenge, the same standard two-dimensional Harris sheet configu-
ration, with a specified set of initial conditions, has been studied by employing a variety
of codes, ranging from resistive MHD codes to fully kinetic particle codes (PIC codes).
The initial parameters used and the results of the simulations are summarized in Ref. [7].
In particular, the computational domain is chosen to be rectangular (−Lx/2 ≤ x ≤ Lx/2,
−Lz/2 ≤ z ≤ Lz/2) with periodic boundary conditions in the x direction and conducting
boundaries at z = ±Lz/2.

Using CELESTE3D, the GEM challenge has been performed with a Nx × Nz = 64 ×
64 grid, a total of 2 × 105 computational particles and a time step ωpi
t = 0.3. For compar-
ison, the explicit PIC simulation presented in Ref. [45] employs a Nx × Nz = 512 × 256
grid, 9.12 × 106 computational particles, and a time step ωpe
t = 0.15 (10 times smaller
than ours).

The main result of the GEM challenge is that all models that include the Hall effect in
the generalized Ohm’s law produce similar rates of reconnection. When the Hall effect is
eliminated from the simulations (resistive MHD model), the reconnection rate is drastically
reduced [8]. In particular, the results of different simulations [21, 31, 45, 51] show that
the difference in the ion and electron dynamics gives rise to in-plane (Hall) currents that
produce an out-of-plane magnetic field with quadrupolar structure which has a key role in
the magnetic reconnection.

The quadrupolar structure of the out-of-plane magnetic field is reproduced by the sim-
ulation performed with CELESTE3D, as shown in Fig. 6. (In Figs. 6–9, the distances are
normalized to the ion collisionless skin depth, c/ωpi, the magnetic field to B0, the velocity
to the Alfvén speed, vA = B0/

√
4πρ, and the reconnected flux to ωpi/(B0c).)

The structure and the peak value of the magnetic field are in quantitative agreement
with the kinetic simulation shown in Plate 1 of Ref. [45]. In Fig. 7, the evolution of the
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FIG. 6. Contours of the out-of-plane By field at the time ωci t = 15 for the simulation whose parameters match
those ones of the GEM challenge [7]. This figure is in agreement with Plate 1 in Ref. [45].

FIG. 7. Evolution of the magnetic field and evolution of the out-of-plane current density (color coded) for the
simulation whose parameters match those of the GEM challenge [7]. This figure is in agreement with Plate 1 in
Ref. [21].
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of the different codes which have performed the GEM challenge (see Fig. 1 of Ref. [7]).

magnetic field lines is shown with the out-of-plane current density: The reconnection starts
rapidly after the current has rearranged itself in the dissipation region. The evolution of the
field lines and current density is in agreement with those shown in Plate 1 of Ref. [21].
The reconnection rate computed by CELESTE3D is plotted in Fig. 8 and compared with
the results of the simulation codes used for the GEM challenge, Fig. 1 of Ref. [7], which
have been provided by J. F. Drake and M. A. Shay. The results of CELESTE3D are in
remarkable agreement with all the previous simulations performed by models that include
the Hall effect.

Even if the reconnection rates given by all the models that include the Hall effect are
similar, there are other physical quantities whose behavior is different in the fluid and
the kinetic simulations. In particular, the x component of the ion and electron veloci-
ties obtained by the kinetic simulations are smaller than those observed with the Hall-
MHD model by a factor 2.5, in agreement with previous kinetic simulation results [21].
These physical quantities and the ion density, as given by CELESTE3D, are displayed
in Fig. 9. The results are compared with the simulation data provided by P. L. Pritchett
from Figs. 4 and 6 of Ref. [45]. The agreement between the CELESTE3D results and
Pritchett’s explicit simulations is remarkable. We observe that the higher fluctuations in the
CELESTE3D results are a consequence of the smaller number of particles used in the
implicit simulation.
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FIG. 9. Comparison between CELESTE3D (solid line) and the explicit kinetic simulation data provided
by P. L. Pritchett (see Ref. [45], Figs. 4 and 6) (dashed line) of (a) the x component of the electron velocity,
(b) ion density, (c) x component of the ion velocity, and (d) z component of the magnetic field, as a function
of x and at z = 0, when �� = 1 [(a)–(c) averaged between tωci = 15 and tωci = 15.6 and (d) at tωci = 15 for
Pritchett’s simulation] within the GEM magnetic reconnection challenge. The results reported in this figure can
also be compared with Fig. 9 of Ref. [21].

5. CONCLUSION

Within the implicit-moment method for plasma simulations, we have presented a Maxwell
solver that eliminates the need to solve an implicit Poisson’s equation (40) in the volume
through a careful formulation of the boundary conditions following Jiang et al. [32]. (A
standard projection, Eq. (35), corrects for inconsistencies between the particle and moment
data each cycle.) Because implicit formulations of Eq. (40) couple transverse and longitu-
dinal parts of the electric field, normal projection methods are only approximately accurate,
and consistent boundary conditions are difficult to formulate [12].

The Maxwell solver presented here leads to the solution of Eq. (44) for boundary condi-
tions (47) and (48), which correspond to perfectly conducting and magnetic mirror bound-
aries, respectively. It is shown that the solution of Maxwell’s equations with these boundary
conditions does not present spurious solutions and is unique.

Numerical results, including an electromagnetic wave in vacuo and an ion tearing mode
(GEM challenge), demonstrate the accuracy of the solutions and good agreement with those
provided by explicit PIC methods.
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